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Abstract 

Spatial andor temporal variabilities of clouds is of paramount importance for at least two 
in tensely researched sub-problems in global and regional climate modeling: 

cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and 
dynamical cloud modeling where the goal is to realistically reproduce the said correlations. 

We propose wavelets as a simple yet powerful way of quantifying cloud variability. More 
precisely, we use “semi-discrete” wavelet transforms which, at least in the present statistical 
applications, have advantages over both its continuous and discrete counterparts found in the bulk 
of the wavelet literature , 

With the particular choice of normalization we adopt, the scale-dependence of the variance 
of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of 
transition from “stationary” to “nonstationary” behavior than conventional methods based on 
auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier 
analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber- 
dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its 
derivative with respect to scale. 

We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud 

an upward-looking milli-meter cloud radar (MMCR) at DOE’s climate observation site in 
Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and 
DOE’s Multispectral Thermal Imager @&TI), a high-resolution space-borne instrument in sun- 
synchronous orbit that is described in sufficient detail for our present purposes by Weber et al. 
(1999). 

For each type of data, we have at least one theoretical prediction -with empirical validation already 
in existence- for a power-law relation for wavelet statistics with respect to scale. This is what is 
expected in physical (i.e., finite scaling range) fractal phenomena. In particular, we find long-range 
correlations in cloud structure coming from the important nonstationary regime. More surprisingly, 
we also uncover artifacts the data that are traceable either to instrumental noise (in the satellite data) 
or to smoothing assumptions (in the MMCR data processing). Finally, we discuss the potentially 

structure from two sources: 

* 



damaging ramifications the smoothing artifact can have on both cloud-radiation and cloud-modeling 
studies using MMCR data. 

Background on Wavelet Transforms and Scaling Laws 

The wavelet transform of a signalfix) is essentially a convolution with a scaled replicate of 
an oscillating function ~ ( x ) :  

where x is real for a time-series and a 2D vector for an image. (We use the vector notation here for 
more generality.) The arguments (a,b) are respectively the scale and position of the wavelet w(*). 
Figure 1 shows the popular Haar wavelet which is piece-wise constant in both 1D and 2D. In the 
latter case, there are in fact 3 possible wavelets associated with differences the horizontal and vertical 
directions and across diagonals. 

We will be seeking scaling relations for the wavelet coefficients in Eq. (l), i.e., a parametric 
representation of 

where ( - )b  means averaging over the argument B .  This is simply the variance of Tvm(a,b) as long 
as (Tvm(a,b))b = 0 which means that there is no overall trend in the data, assuming ~ ( x )  has single 
oscillation (per direction in 2D). For better accuracy, the wavelet coefficients in Eq. (1) are ordered 
by increasing value before summing their squares at each scale a 2 e, the pixel scale. The exponent 
N in Eq. (2) is then obtained by linear regression in log-log axes. 

Following ArnCodo et al. (1995), we note that using ~ S F ( X )  = 6(x-!)-S(x) in Eq. (1) for 1D 
brings us back to the classic structure functions, of turbulence theory fame in particular. The 
parameter H in Eiq. (2) is a Hurst-like exponent that has the usual (Mandelbrot 1982) meaning 
when between 0 and 1, as expected in the vast literature using WSF(X). When using more interesting 
wavelets, H can, in principle, be negative or greater than unity depending on the choices offand w. 
For instance, with the non-standard normalization used in (l), &correlated stationary (or “white”) 
noise yields H = -1/2. By the same token, exactly “l/fy noise yields H = 0 while smooth 
(everywhere differentiable) signals yield H = 1. Consider the following examples: 

S tationaq behavior is found in uncorrelated instrumental noise at very small scales and after the 
large-scale decorrelation of cloudmess; here, wavelet coefficients decrease with increasing scale. 
Nonstationary behavior is found in the turbulence of horizontal structure in clouds as well as 
instrumental or physical smoothing in the data; here, wavelet coefficients increase with scale. 

Figure 2c illustrates these trends in the wavelet spectrum schematically while panels 2a and 2b show 
the corresponding outcomes of Fourier and structure-function analyses respectively. The reason 
the wavelets are scaled as prescribed in (1) is now clear. The exponents of the statistical moments 
of the coefficients are the same as for structure functions at all orders, at least for nonstationary 
signals with stationary increments. 

FIGURE 1 here 
Figure 1: Haur wavelets and scalingfunctiuns in ID (left) and in 2 0  (right). The top row are the 
scaling functions, followed by the characteristically piece-wise constant wavelets. 



FIGURE 2 here 
Figure 2: Variubilig analysis in an idealized turbulence experiment. The “integral” scale R 
marks the transition from the inertial sub-range, where presumably a down-scale Kolmogorov 
cascade is unfolding, to an independent cascade. The Kolmogorov or “dissipation” scale q marks 
the transition froin inertial- to dissipation-dominated dynahics. We assume here that the sampling 
is such that instrumental (e.g., velocity probe) noise dominates the smallest scales, hence a final 
scale break without any physical significance. (a) Fourier spectrum. (b) Structure functions. (c) 
Wavelet variance/energy spectrum. 

Discrete and Semi-Discrete Wavelet Transforms 

In the wavelet literature, the integral transform in (1) is assumed continuous in a and 6;  it is 
also very redundant. Complete removal this redundaqcy is achieved by the discrete wavelet 
transform where 

(3) 

where j = 0, ..., j,,, while b is sampled on a grid of constant 2 ~ j .  This enables Mallat’s (1989) 
efficient cascade technique for computing TvM(a,b)  known as “multi-resolution analysis’’ or 
MRA. The maximurn scale of interest is determined byjmax which is set to the integer part of 
log2N-1 where N is the length of the times series in ID, oi Lo that of log~min{Nx,Ny}-l for a 2D 
field or “image” with N = N,xN pixels. The algorithmic complexity of an MRA is N, as 

We prefer to use the “semi-discrete” wavelet transforms which are discrete in scale, but 
continuous in position (Davis et al. 1999, and references therein): b coveib all possible positions. 
That means all positions where the support of the wavelet is still inside the data field. The number 
of coefficients and algorithmic complexity then grows only as MogN, where N is the number of 
points (pixels) in the time-series (image). The redundancy of this representation at each scale has 
been exploited previously, using several different terminologies which would be misleading here, in 
denoising and data compression applications but we see it as a safeguard when cumulating spatial 
statistics. Notice that, by now, we have effectively relaxed the habitual (Daubechies 1992) 
constraints of orlhogonality and normalization in discrete wavelet theory. 

illustrated on a simple example in Fy ig. 3. 

The semi-discrete wavelet transform was implemented using a simple variant of Mallat’s 
(1989) MRA trick which calls for recursive estimation of the coefficient of “scaling function” q(x)  
associated with the Haar wavelet (or wavelet family in the 2D case). This is simply the average over 
2 neighboring pixels at any scale (4 in the 2D case). For more details, we refer to Davis et al. 
(1999). For better memory management (especially in 2D), this averages in a. (2) are computed 
during the multi-resolution recursion at a given Uj in (3). 

FIGURE 3 here 
Figure 3: Discrete Haar wavelet analysis in ID using multi-resolution analysis for N = 16. The 
alternate notatian cyab& for T m(a,b) in Eq. (1) is used here where ya,b(x) = y( (x4 ) la  ). At 
each step in the (inverse) casca J e, disjoint 2-pixel averages are computed, yielding the scaling- 
function coefficients. They are only used to proceed to the next (larger) scale. In the semi-discrete 
wavelet transform, the only difference is that the 2-pixel averages are not disjoint but, on the 
contrary, sampled continuously (Le., at the smallest pixel scale 4). 



1D Horizontal Transects of mm-Radar Reflectivity 

We first analyze a 6-day long sequence of cloud mm-radar data collected at the ARM 
Southern Great Plains site, January 9-14, 1998. Vertical profiles of reflectivity Zt(z) are re-mapped 
into constant altitude transects f , (x )  = Zt(z) ,  where x = vt (v being the appropriate advection 
velocity). A full suite of range bins with Az = 45 m is captured every At = 10 s (hence Ax = 50 m 
at a nominal =5 m/s advection speed). The data displayed in Fig. 4 are not very interesting to 
visualize. Indeed, during this long cloudy episode, there was always a low-level cloud occupying 
typically the first 20 levels, and not much else. We performed 1D semi-discrete wavelet analyses 
for each level, using 5 short instances of linear interpolation to compensate for the data drop-out 
between 24-hour periods. 

Figure 5 shows a log-log plot of logz(7’ V](a,b)2)b versusj = log2(a/A.x) = log2a+constant 
from Eq. (3) for levels z =180 m and 630 m. The range of scales is huge, from 10 s to 10x214 s, 
which is 4 6  hours (corresponding to several hundred km). 

We see that the lower layers exhibit three scaling regimes. As scale increases, we see a very 
smooth regime, with H close to I ,  followed by a regime with H = f/3 which is characteristic of 
boundary-layer turbulence, and finally we see a stationary regime with H < 0. Keeping the mean 
wind constant at -5 d s ,  transitions are respectively at = 0.5 km and - 50 km. The latter scale is 
probably somewhat exaggerated since the wind eventually meanders. 

The small-scale transition from turbulence to smoothness is not observed in any in-situ 
probings that we know of. In fact, it is perfectly well explained by the interpolation performed 
between 4 or more neighboring horizontal samples in the specific “best estimate” radar operation 
mode used here. As it turns out, this mode is designed for whole-column monitoring and 
compromises the sampling in the boundary layer. The interpolation remedy is safe in the sense of 
mean values but it corrupts the correlation structures. 

As an example, it would be very misleading to use these radar data at small scales to assess 
cloud model performance (e.g., using a Large-Eddy Simulation or LES) since, in dynamical 
modeling too, it is unfortunately necessary to introduce an artificial smoothing. In this context, the 
artificial smoothing is used to control small-scale numerical instabilities. A MMGR-to-LES 
comparison would be a reasonable approach to model validation. However, it will lead to the 
erroneous conclusion that the numerical smoothing procedure has a minimal impact on the model 
output since cloud structure is apparently smooth at the smallest observable scales. 

Another source of confusion can follow by comparing the interpolated MMCR field with 
high-resolution satellite (e.g., LANDS AT) images at visiblehear-IR wavelengths which are affected 
inherently by radiative smoothing. This is an inescapable physical process due to the multiple 
scattering. It explains in particular the observed decoupling of spatial fluctuations in zenith radiance 
and in liquid water path at scales smaller than about the cloud thickness (Davis et al. 1997), 
precisely a few hundred meters in the present case. Here, a MMCR-to-LANDSAT comparison 
would lead to the erroneous conclusion that the radiative smoothing is either absent or has a 
minimal effect on already smooth small-scale cloud structure. 

We strongly recommend that either the temporal radar sampling be increased so that the 
interpolation becomes unnecessary or that the reflectivity profiles be archived at a resolution 
which is dynamically as well as radiatively meaningful. 

In contrast, the large-scale transition is apparently real and probably related to the scale- 
breaks observed in reflected (Austin et d. 1999) and transmitted (Savigny et al. 2002) radiance 
fields at several tens of kilometers. The likely micro-physical explanation for this scale-break is the 



cap imposed on liquid water path, hence its variability, in stratus layers by the onset of efficient 
drizzle production. This process is still poorly understood. 

The higher layers exhibit just two scaling regimes: the same artificially smoothed regime as 
for the low levels, and a long essentially flat regime (for the wavelet coefficient). This corresponds 
to a “llj” spectrum, the very same scaling that has been observed in recent meso-scale satellite 
studies for TOA temperature fluctuations (J.-I. Yano, private communication). The change in 
scaling with height emphasizes the statistical anisotropy and heterogeneity of cloudiness. 

FIGURE 4 here 
Figure 4: MMCR data from the SGP site for January 9-14, 1998. The standard (Clothiaux et al. 
1995) rendering of “best-estimate” radar reflectivity is used along with the cielometer-based lower 
cloud boundary. Time increases day-by-day from left to right, then top to bottom. 

FIGURE 5 here 
Figure 5: I D  semi-discrete wavelet spectrum analysis of horizwual layers of ARM cloud-radar 
data in Fig. 4 .  Solid line: z =180 m; dashed line: z = 630 m. 

2D Correlations in a Solar-Channel Cloud Scene from the Multispectral Thermal Imager 

We now turn to data from MTI, a high-resolution push-broom imaging spectro-radiometer 
with state-of-the-art calibration (especially in the thermal IR channels). In the visiblehear-IR 
spectral region of interest here, the pixels have a mere 5 m footprint (better resolution is now 
commercially available, but only in pan-chromatic mode). We investigated a completely cloud- 
covered scene of opportunity which ~b very smooth across the whole image. W I ’ s  focal plane has 
three sensor chip mays (SCAs) that build up the complete swath. The most striking feature of the 
image (not illustrated) is indeed the two boundaries between S C h .  Since the different SCAs can 
not be inter-calibrated at these high radiance values, we analyze them separately. 

Figure 6 shows wavelet energy spectra based on the 2D Haar transform in Eq. (1) and Fig. 
I for the three SCAs. Over these scales (5 m to 1.3 km), we expected a very smooth radiance field 
due to the horizontal transport of photons across many pixel scales via multiple scattering. This 
“radiative smoothing’’ has been quantified by Marshak et al, (1995) and others. We therefore 
anticipate Hto be quite close to unity. This makes the scale-break in Fig. 6 around 22 pixels (20 m) 
rather intriguing. We find the expected Hvalue at larger scales and a negative H ,  characteristic of 
stationary noise, at smaller scales. The turn-around in wavelet energy occurs where signal equals 
noise. Note that, in this study, “signal” means the diminutive wavelet coefficients for a smooth 
field, not the overall photon counts, while “noise” (whatever its instrumental source may be) is 
amplified by takmg differences of large quantities to compute the wavelet coefficient. 

The origin of this detector noise is not fully understood. It is believed to be traceable to the 
extrapolation o€ radiometric calibration data gathered for relatively dark targets to the unusually 
bright -and indeed inadvertent- target in this cloudy image. 

We recommend that in cloud studies using MTI data the bright reflected radiances be 
averaged over scales of at least 4 pixels (in each direction) to obtain noise-free increment metrics 
such as wavelet coefficients. This brings its effective resolution close to that of LANDSAT (30 rn 
pixels). Contrary to LANDSAT’s to saturate at a DN value of 255, MTI’s broader dynamic range 
and 12-bit digitization avoid this pitfall. 



FIGURE 6 here 
Figure 6: Second-order spatial statistics for MTZ cloud data. Wavelet analysis of the x-variability 
is performed for SCA 1 (solid line), SCA 2 (dotted line), SCA 3 (dashed line). The other 2D 
wavelets illustrated in Fig. 1 give similar results. 

Summary 

Discriminating between stationary and nonstationary behavior is a non-trivial yet essential 
task in data analysis in the presence of spatial correlations. Indeed, only the averages of stationary 
quantities are robust. For instance, geophysical signals from turbulent systems such as clouds are 
nonstationary; increments however are often stationary in this case over a large range of scales. 
We have argued that wavelet transforms, especially in their semi-discrete incarnation with a 
cunningly non-standard normalization convention, lead to improvements over Fourier- and 
structure-function analyses in this key task. 

We have analyzed ground-basedactive and satellite/passive remote sensing data on stratus 
cloud layers with semi-discrete wavelet transforms. For simplicity, the piece-wise constant Haar 
wavelet was used in the 1D analysis of mm-radar transects, and its extension to 2D by tensor 
products for the satellite imagery. We confirmed the existence of well-known scaling laws and a 
lesser-known scale-break that terminates the long-range correlations in cloud structure at a few tens 
of kilometers. 

Our most interesting finding is that scale-breaks in wavelet energy spectra can also be used 
to diagnose problems in the data, unsuspected artifacts. In this study alone, we found a deficit in 
variance (traceabIe to human intervention) in MMCR data and an excess of variance (traceable to an 
instrumental noise) in MTI data. In the former case, we conjure up situations of direct relevance to 
the ARM Program were very misleading conclusions can be drawn from seemingly natural 
comparisons between models or other sources of data. Our recommendation to avoid these pitfalls 
is to archive MMCR data without interpolation, or to increase the sampling as needed. 
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Figure 1: Huar wavelets and scalingfunctions in I D  (left) and in 2D (right). The top row are the 
scaling functions, followed by the characteristically piece-wise constant wavelets. 
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Figure 2: Variability analysis in an idealized turbulence experiment. The “integral” scale R 
marks the transition from the inertial sub-range, where presumably a down-scale Kolmogorov 
cascade is unfolding, to an independent cascade. The Kolmogorov or “dissipation” scale q marks 
the transition from inertial- to dissipation-dominated dynamics. We assume here that the sampling 
is such that instrumental (e.g,, velocity probe) noise dominates the smallest scales, hence a final 
scale break without any physical significance. (a) Fourier spectrum. (b) Structure functions. (c )  
Wavelet variancelenergy spectrum. 
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Figure 3: Dl,crete Haar wave,dt analys,, in 1 D using multi-resolution analysis for N = 16. The 
alternate notation q a , b f >  for T m(a,b) in Eq. (1) is used here where ya,b(x) = y( (x-b)la ). At 

function coefficients. They are only used to proceed to the next (larger) scale. In the semi-discrete 
wavelet transform, the only difference is that the 2-pixel averages are not disjoint but, on the 
contrary, sampled continuously (Le., at the smallest pixel scale !). 

each step in the (inverse) casca J e, disjoint 2-pixel averages are computed, yielding the scaling- 



Figure 4: MMCR daru from the SGP site for January 9-14, 1998. The standard (Clothiaux et al. 
1995) rendering of “best-estimate” radar reflectivity is used along with the cielometer-based lower 
cloud boundary. Time increases day-by-day from left to right, then top to bottom. 



Figure 5:  I D  semi-discrete wavelet spectrum analysis of horizontal layers of ARM cloud-radar 
data in Fig. 4. Solid line: z =180 m; dashed line: z = 630 m. 



Figure 6: Second-order spatial stutistics for MTI cloud datu. Wavelet analysis of the x-variability 
is performed for SCA 1 (solid line), SCA 2 (dotted line), SCA 3 (dashed line). The other 2D 
wavelets illustrated in Fig. 1 give similar results. 


